Researcher blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Team Blogs
    Team Blogs Find your favorite team blogs here.
  • Login
    Login Login form

Posted by on in News

Hi everyone!  DEEPEND science is so exciting that even the whales are following us!  Just wanted to share that some of our team were lucky enough to catch a glimpse of an Orca today!  Even though it was a bit far from the vessel, a few pictures and video were captured.

As rare as they are to see out here, it is thought that there are some resident Orcas that live here in the Gulf of Mexico.  

We will be keeping our eyes open when we are out on deck as the sea state is perfect for more whale sightings!


Last modified on

Posted by on in News

               Hi! My name is Stormie Collins, and I am a PhD candidate at Florida International University. I have been involved in processing samples collected from DEEPEND|RESTORE cruises since 2019, however, this is my first time getting to go to sea with the group! I am largely interested in the way that organisms perceive the world around them, and the associated adaptations they have evolved to survive within their environment. In the deep-sea, many organisms utilize bioluminescence; a process through which a chemical reaction produces light. My dissertation focuses on vision and bioluminescence in deep-sea shrimps. Being able to see the animals freshly collected allows me to observe color as they are in life and provides a better opportunity to consider bioluminescence across species as many light organs become invisible after animals are placed in preservative. 

               Shrimps can be bioluminescent through dermal light organs called photophores, internal photophores that arise as a modification of the hepatopancreas, or through a luminous secretion, which may also be referred to as “spew”. Among decapod shrimps, luminous secretions are most common, and many species use this as a defense mechanism to evade approaching predators. Dermal photophores are embedded within the cuticle and are obvious. Internal photophores are obvious in sergestid shrimp (see below), however, they are also present in other shrimps, where they are much easier to overlook, particularly in red pigmented shrimps. The caridean shrimp Plesionika richardi is documented to have internal photophores, however, they have never been previously observed in this species by our team. Upon collection of 2 P. richardi, observation of internal photophores were indeed confirmed (see below), and when looking for them, are obvious. It is likely that this has been overlooked as the red pigmentation sort of masks the internal organs and they are no longer visible in preserved material.

               The most up-to-date count of bioluminescence depicts 94 independent origins across the tree of life, making this perhaps the most common form of communication on the planet. Though our current understanding of bioluminescence in shrimps with both dermal and internal photophores suggest they are used for counterillumination camouflage, I believe that the functional role of bioluminescence should be considered separately for each species. The presence of internal photophores in P. richardi provide an excellent example of how underestimated and overlooked bioluminescence may be in decapod shrimps, as well as many other marine organisms.


P.s.- the view from the ship is NOT too shabby ?

b2ap3_thumbnail_shrimp1.jpgb2ap3_thumbnail_shrimp2.jpg b2ap3_thumbnail_Shrimp3.jpgb2ap3_thumbnail_sc_1.jpg

Last modified on

Posted by on in News

Hi everyone! My name is Natalie Howard and I’m a master’s student in Dr. Jon Moore’s lab at Florida Atlantic University’s Harbor Branch Oceanographic Institute. This is my first time participating in one of the DEEPEND/RESTORE cruises and I am very excited to be here! I was introduced to the project while pursuing my undergraduate degree at the University of South Florida. While I was there, I helped Dr. Heather Judkins with pteropod data, and she introduced me to Dr. Jon Moore, where I now work with fish collected from the cruises.


This is an image of Melamphaes suborbitalis. It’s one of the larger Melamphaes, with an average standard length that’s over 90 mm! It also has a small spine on the top of its head, which is a distinguishing trait of this species.

My thesis project is focused on vertical migration and diversity of Melamphaes (Melamphaidae). The Melamphaes fish we find in the Gulf of Mexico are relatively small, averaging between 20- and 30-mm standard length and are dark brown in color. These fish reside in the meso- and bathypelagic zones during the day but will migrate into shallower waters at night to feed and avoid predation. This behavior is referred to as diel vertical migration, which I will be investigating as part of my research project. There have also been many recent taxonomic revisions of the family Melamphaidae, so I’m hoping that we find one of the newly identified species on DP09! 

Last modified on

Posted by on in News

Yes, you guessed it!  It’s time for another DEEPEND cruise in the Gulf of Mexico!  Vans are loaded and being driven to Gulfport, MS, gear is packed. scientists are scrambling to make sure we have everything we need, and everyone is traveling in the next day or two to arrive in Gulfport for another successful adventure.



Our current plan includes loading all the gear onto the R/V Point Sur on Monday and depart from Gulfport, MS at midnight.  We will be heading to our usual stations for collecting samples from 0-1500 m deep using the MOC10 net system once again.  This will be our 9th DEEPEND cruise and the 3rd as part of the NOAA RESTORE program which concludes next year.  We are very excited to keep this long-term survey going as we still know so very little about the deep ocean we are exploring.

We will be posting blogs along our journey once we get underway so stay tuned! 

Last modified on

Posted by on in News

Have you ever wondered how animals communicate, find food, mates and defend themselves in complete darkness?  The answer is that most deep-sea animals have evolved the ability to produce their own light, and this is called bioluminescence.  Most deep-sea creatures either have all the machinery to produce bioluminescence themselves (examples include fish and crustaceans), while others form a unique relationship with glowing bacteria that live in their light organs (example include squid and angler fish).  This results in a beautiful underwater display of flashes, sparks and glows, much like a fireworks display on the 4th of July.  However, in the deep-sea, where food and mates are limited and predators lurk in complete darkness, this light show is not for fun.  The stakes are high, and this underwater “language of light” is critical for the animal’s survival.  


During this cruise we have witnessed some incredible examples of bioluminescence which I am excited to share with all of you. 

Deep-sea flashlights:  Do you see all those beautiful dots of purple and red?  Those are called photophores, or light organs, which glow in the dark.  Much like a flashlight they can turn on and off when needed and can be tuned to match the brightness around them.  In many cases they are found along the entire surface of the animal’s body and can be used to lure in prey (oh, something shiny!!), defend themselves (ahhhh, too bright!!) or communicate with others of the same species (hey, you see me over here, what is yourrrrr name?).  Below, you are looking at a loosejaw fangfish (Aristostomias) and Viperfish (Chauliodus sloani).  One has a bring red light organ below the eye and the other has light organs all over!  


b2ap3_thumbnail_flashlights.jpg   b2ap3_thumbnail_flashlight2.jpg

Photos:  H. BRacken-Grissom


Glowing blue vomit:  Did you know the deep-sea shrimp can vomit a bright blue glowing mucus?  Yep, it is true, and they do this to protect themselves when they get scared.   Ingenious, huh?  Below, you are looking at a deep-sea shrimp by the name of Notostomus gibbosus.  When startled, this deep-sea beauty will secrete a blue smokescreen that will stun a predator while they tail-flip backwards to escape.   Gooo team shrimp!



Photo: H. Bracken-Grissom

Wonder what it looks like?  See below....


Photo:  Sonke Johnsen

The Language of Light:  We know very little about how dee-sea creatures use bioluminescence to communicate due to the difficulties of studying these creatures in their natural habitat.  However, it is possible that these beautiful multi-colored barbels could be the clue.  Do these help find mates?  Do they lure in prey?  Both?  I assure you we are going to have some fun exploring and trying to solve the many mysteries that the deep-sea holds.  Until next time……. 


Photo:  H. Bracken-Grissom








Last modified on