DEEPEND Blog

Researcher blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Team Blogs
    Team Blogs Find your favorite team blogs here.
  • Login
    Login Login form

For DEEPEND, I am one of the taxonomists that identify the cephalopods (squid and octopus) that are collected from the MOCNESS nets.  I am also collecting two other mollusc groups, pteropods (Sea Butterflies) and heteropods (Sea Elephants).  Once animals are identified, tissue could go to one or more of the following places for further DEEPEND study:  Stable isotope analysis (examples food web interactions among fauna), PAH (studying possible contaminants), or genetic barcoding for species identification verification and genetic diversity analysis. 

b2ap3_thumbnail_Carinaria.jpgb2ap3_thumbnail_pteros.JPG

 

Photo 1:  A Sea Elephant, Carinaria sp.

Photo 2:  A sample of Sea Butterflies (pteropods)

 

One of the advantages of using the MOCNESS is that we can collect organisms at discreet depths to analyze patterns on a fine scale.  All focus animals: fishes, crustaceans, gelatinous organisms, and cephalopods are examined to piece together a more complete picture of the midwater column dynamics as they all contribute to the carbon moving from the surface waters to the deep-sea floor.  

Team Mollusca are looking at vertical migration patterns for our three groups.  Past studies on cephalopod vertical migration involve very few individuals per species so it is important to make the most of the large collection we have to further analyze these patterns.  Our findings suggest that there is no one set vertical migration pattern by group but the patterns differ by species.  For example, deep-sea pelagic octopods and the Vampire Squid are not found above 600m in the water column while the Moon Squid and Firefly squid move from the mesopelagic (200-1000m) to the epipelagic (0-200m) nightly, presumably for feeding purposes.  We are noticing similar patterns in the heteropods, some migrate upwards and some do not.  Pteropod analysis is underway at this time, stay tuned!

Here are some of the molluscs that are migrators and non-migrators,

b2ap3_thumbnail_Japetella-1.JPG      b2ap3_thumbnail_Vampire1_20180729-013938_1.JPG

Non-migrators:  Japetella diaphana and Vampyroteuthis infernalis

 b2ap3_thumbnail_Selenoteuthis_scintallans.JPG      b2ap3_thumbnail_Pterygioteuthis-Squid-No1-Image-No1-DP01-01MAY15-MOC10-B001D-001-N4--2015-DEEPEND--Dant-Fenolio.jpg

Migrators:  Selenoteuthis scintallins and Pterygioteuthis sp.

 

 

Last modified on

Posted by on in News

In the DEEPEND, we apply many techniques to learn about the animals that live in the depths of the twilight zone. One of the types of equipment we use is called an echosounder. While this may sound like a strange instrument, its actually quite common and in fact is on most fishing boats, and often called the ‘fish finder’ or the ‘bottom machine’. We use a similar type of fish finder that is powerful enough to send and receive sound to the depths of the ocean and use the data we collect to study the patterns of the animals in the deep scattering layers (DSLs). In the figure, the daily migration event can be seen with many of the animals within the DSL moving from the depths into the surface at night. Interestingly, not all animals move up at night and some remain at depth and the use of the acoustic devices helps us to better understand how the DSLs change in space and time. 

Photo 1:  Output from the echosounder of the DSL layer moving up at dusk                     

Photo 2:  Examples of collected animals in the MOCNESS that the echospunder attempts to pick up.  Interestingly, squid and octopods don't create a strong enough signal for the     echosounder to pick up.

b2ap3_thumbnail_Picture1.jpg        b2ap3_thumbnail_Picture7.jpg

 

While the echosounder provides important data about the timing, extent and intensity of the migration patterns and the DSL in general, acoustics are limited in their ability to discriminate among species. Because of this limitation, we use net to collect samples to identify the community of organisms which also permits us to describe the diversity of species that we encounter. The mesopelagic community in the Gulf of Mexico is hyperdiverse with greater than 800 species of fishes, crustaceans and other invertebrates.

 

Indeed, the most prominent piece of equipment that we rely on is the MOCNESS which allows us to collect specimens at through the water column.

 

The echosounders on the ship provide a picture of large patterns in the ocean so we can learn about the processes that are important at broad scales. However, it is often useful to be able to zoom into the layers and see the individuals that live in those deep areas and to look at them one-on-one. To achieve this, we have attached an autonomous battery-powered echosounder onto the frame of the MOCNESS and added two transducers that collect acoustic data very close to the individuals (~20-40m). By placing the echosounder closer to the animals at depth, we can actually count and measure individuals and learn about their behavior in the dark without the need for any lights. We are learning a tremendous amount from the data we have collected on these animals and are excited to see what tonight’s sampling event shows us!! 

 

 

       Photo:  Echosounder attached to the MOCNESS and output screen of individual animals 

 

b2ap3_thumbnail_Fig3_20180728-174201_1.jpg

 

 

Last modified on

Hi!  My name is Natalie Slayden, and I am a Master’s student at Nova Southeastern University working as a Research Assistant in Dr. Tracey Sutton’s Oceanic Ecology Lab. This DEEPEND cruise is my first research cruise!

b2ap3_thumbnail_Nat_Nina.JPG

 

Photo:  Natalie and Nina prepping the MOC

On this DEEPEND cruise, I am a part of the fish processing team. The process begins with the boat pulling the MOCNESS which is a net system consisting of six nets. One net fishes open the entire time, while the other five nets open and close at different depths allowing us to determine where we catch certain species by depth in the water column. Once the nets are pulled out of the water, the fishes are brought into the lab per net. Dr. Tracey Sutton sorts and identifies each fish to species. I then weigh, measure, and preserve the fishes based on how they will be utilized. All this information is entered into the DEEPEND database by my partner in crime, Nina Pruzinski. Several universities use these fishes for varying projects.

For my thesis project, I am looking at the otoliths (ear stones) of non-vertically migrating deep-pelagic fishes to determine their age. I will also describe the otolith patterns and correlate those patterns to the life history of the fishes. Fishes have otoliths to help them orient themselves within the water column and detect sound. The otoliths have rings that can be counted to determine age. The rings can represent days, months, years, or a single meal. The fishes I will use for my project are frozen so that I can remove and analyze the otoliths once I get back to the lab at Nova Southeastern University. Below are some pictures of the fishes that I will be using for my age and growth study! 

b2ap3_thumbnail_Nannobranchium.jpgb2ap3_thumbnail_Chauliodus.jpg

 

Photo 1:  Nannobranchium lineatum (Lanternfish species)

Photo 2:  Chauliodus sloani (Viperfish species)

 

Last modified on

Posted by on in News

On DEEPEND cruises we spend most of our time doing science-related activities that you may have read about in previous blogs.  Believe it or not, we do occasionally have down time and we have to figure out how to fill it.  There is a TV in the galley that is quite popular to hang around and watch during meal times and late at night.  My favorite DEEPEND pastime however, is fishing!

b2ap3_thumbnail_MW_fishing.JPG

Photo:  Max on the hunt for his first tuna

DEEPEND researchers assemble a stack of rods and reels before every cruise in the hopes we will stumble across some good fishing action.  This is not guaranteed and I have been skunked on previous DEEPEND cruises.  On afternoons when the net is not in the water and we are in transit to another station trolling is the go-to method of fishing.  We have already landed on small tuna on this cruise while trolling. 

b2ap3_thumbnail_Rod_reels.jpg

Photo:  The rod and reel assemblage area of the lab

 Typically the best fishing takes place when a school of fish or some sort of floating structure (like sargassum or floating boards) is spotted.  Floating structure often attract small baitfish, which in turn attract larger predators.  Already this cruise we have stumbled across a school of Chicken (small) Mahi and Little Tunny.  I have landed two Mahi and a Little Tunny, which was my first ever tuna species caught on a rod and reel!

b2ap3_thumbnail_Ocean_Trigger.jpgb2ap3_thumbnail_TR_fish.jpgb2ap3_thumbnail_Little_Tunny.jpg

Phptps:  Ocean Triggerfish; Travis with a Little Tunny; Bpttom photo:  Little Tunny

Last modified on

Posted by on in News

b2ap3_thumbnail_Laura.jpg

Photo:  Laura on a DEEPEND cruise

 

I went on the very first DEEPEND cruise. I was in the second year of my PhD and I couldn’t believe my advisor, Dr. Heather Bracken-Grissom, was sending me to initialize collection protocols for the crustacean genetics portion of the proposed research. Because research cruises are the best (only) means of collecting our target specimens, they are very important. Moreover, every cruise is an opportunity to collect for multiple projects. When I went out that first time, I was collecting for five or six research projects…it was a lot of pressure.

Since then, the DEEPEND cruises have been a staple of my graduate school career. I’ve been on five of the six cruises. It’s difficult to describe what these cruises are like: a flurry of collection activity, a sleep-deprived science bender, a two-week oceanic boot camp. They are challenging and rewarding and they shape what sorts of questions DEEPEND can ask and address. Over the course of these cruises, I’ve collected thousands of specimens and used them to illuminate the connections between the midwater Gulf and the Atlantic.

Last month, I successfully defended my doctoral dissertation. In the days preceding the event, many DEEPEND scientists reached out to wish me luck. And along with all the concrete, quantifiable benefits of these research cruises, these communications emphasized again the myriad qualitative benefits: I’m a better scientist for having been a part of DEEPEND. On that first cruise I was a slightly under-prepared, over-eager graduate student on a ship full of experienced researchers and scientists who immediately supported and accepted me as one of them. They encouraged me and offered me a place at their table. The collaborations and relationships established on these cruises will last my entire professional career.

One month before this cruise left dock, I accepted an NIH postdoctoral fellowship at the University of Colorado. One month after we return to dock, I’ll move to Denver and take up the position in the Computational Biosciences Department. The talk I gave during the application process was comprised entirely of my work with DEEPEND – a talk refined through rehearsals with DEEPEND scientists and GOMOSES presentations.

This post is getting a little longer than I intended, so I’ll end it the way I end most cruises: with gratitude. GOMRI, DEEPEND, FIU, R/V Point Sur, Dr. Bracken-Grissom, thank you. Thank you for letting me roll with you.

b2ap3_thumbnail_Megan_Laura_2.JPGb2ap3_thumbnail_Laura-and-Tammy.jpg

Photos:  Laura hard at work during DEEPEND cruises.  So many crustaceans to identify and sample!

Last modified on